

124

Journal of Engineering Technology (ISSN: 0747-9964)
Volume 6, Issue 1, Jan, 2017, PP.124-145

Measuring the Evolution of Open Source Software in E-Learning Systems

Ajlan Al-Ajlan

Information System Management, Qassim University, Buraydah, Saudi Arabia

Abstract. Measuring the evolution of any system, whether commercial or non-commercial, is

important if the advantages and disadvantages of systems are to be determined. For that

reason, the most important challenges are the continuously changing environment in which

FOSS operates and its relationship with commercial software. This paper therefore measured

the evolution of FOSS in relation to Moodle and Magento software and examined and

monitored this using metric technology. It has made a compression between the rate of change

of four metrics between Moodle and Magento systems. In addition, Lehman’s laws were used

to observe and support the scale of the evolution. Moreover, Project Code Metrics were used

to measure nine versions of Moodle and four versions of Magento as a case study.

Keywords: E-Learning, Free Open Source Software, Moodle and Magento, Project Code

Metrics, Lehman’s laws.

1 Introduction

E-Learning was a preliminary form of online learning, used especially in higher education.

Since the invention of the computer in the middle of the last century, technology has rapidly

developed in all fields and must now be taken into consideration whenever possible.

Computer software can be divided into two types of programs. The first type consists of

commercial programs, which are owned by companies or individuals, and the second type is

Free Open Source Software (FOSS). Commercial software is encrypted and not open to

users, but is instead mainly owned by an individual or a company. FOSS is unencrypted and

open source, which means that users are free to use, download, modify and even distribute it

under the terms of the GNU license [1, 2].

Very large software packages need to continuously develop if they are to keep pace with

the rapid advances in technology and to avoid losing out to market competitors. However, the

preservation of these large program packages is difficult, very complicated, and time-

consuming. This complexity is required to add new tools and features, and for the repair and

maintenance of all the complex software, which takes a lot of time and effort and is

expensive. There are two patterns in the evolution and growth of OSS: the maintenance of the

software codes and the development of the requirements of the application. The evolution of

FOSS can be evaluated using tools such as SuiteCX and quantitative metrics [2, 3].

It is clear that the protection and security of FOSS is very important; this has received the

most attention from developers and researchers. Even with rising anxieties related to this

issue, relatively few studies of FOSS have been published. There are currently many more in-

125

Journal of Engineering Technology (ISSN: 0747-9964)
Volume 6, Issue 1, Jan, 2017, PP.124-145

depth studies that examine how the structural design of software supports FOSS [1, 4].

Therefore, this study aims to confirm that FOSS is one of the most important aspects of the

evolution of software development, because it is open source and therefore easier to access

the code without restrictions or costs. Moreover, it presents the most important tools that may

be used to develop FOSS.

The main aim of this study was to measure and demonstrate the evolution of FOSS.

Project Code Metrics (PCM) were used to measure the evolution of nine versions of the e-

learning system Moodle and four versions of the e-commerce system Magento. The focus of

this study was on four areas in the Moodle and Magento systems. The differences between

the nine versions of Moodle released over a period of seven years were examined. In

addition, this study examined the evolution of Moodle by applying the eight Lehman laws of

software evolution.

The rest of this study is organized as follows: a literature review of FOSS and the

evolution of software and e-Learning systems are described in Section 2. Section 3 describes

the evolution of FOSS by using Project Code Metrics with Moodle software as a case study.

Section 4 presents a discussion of this work. Finally, a conclusion and suggestions for future

work are presented in Section 5.

2 Literature Review

2.1 Free Open Source Software

FOSS has begun to be extensively adopted by commercial, public and academic

organizations. Developers use open source codes as a language to create and develop

software. These codes are free and not closed, meaning they are available to all programmers.

The ease of access to the code and ability to download it for free and without restrictions has

led to a revolution in the use of open source programming languages to develop software.

FOSS can be used in operating systems such as Linux, email software, Internet servers such

as Apache, Java’s Guice, and e-Learning systems such as Moodle [5, 2].

In 1970, FOSS was first developed in multiple countries. Richard Stallman, an American

software developer, was the first person to develop and suggest ideas for the development of

a free version of Unix software. The GNU operating system was released under the newly

created General Public License. Assurances were made that the source code must remain

openly accessible to all users [1, 5, 6].

In 2000, the Organizations and Overview project was established as a FOSS project. It

was released in 2001 and the first version was released in 2000. The development started

within StarDivision, a German-based company acquired by Sun Microsystems in 1999.

Before establishing the Organizations and Overview project, the code was closed source. The

website OpenSource.org provides more information about the development, collabouration

and use of OS software [7].

126

Journal of Engineering Technology (ISSN: 0747-9964)
Volume 6, Issue 1, Jan, 2017, PP.124-145

There are already more than 300 types of commercial e-Learning software, of which more

than 70 are free e-Learning systems that use FOSS [8]. Some of this software, such as

Moodle platforms is superior to commercial e-Learning software. This study focuses on

Moodle and shows some of its versions in Table 1 [9, 10, 11].

Table 1. Summary of Moodle Versions Statistics [30]

No. FOSS No. FOSS No. FOSS

1. Moodle 2. Bscw 3. WebCT

4. Sakai 5. ProProfs 6. LON-CAPA

7. Ilias 8. Udacity 9. Spaghetti Learning

10. Eduplone 11. Siminars 12. MamboLaiThai

13. Claroline 14. Udemy 15. SkillShare

16. Drupal 17. .LRN 18. OpenACS

The Reasons for Working with FOSS. The reasons for working with FOSS include the

increased adoption of open source software. It is now considered equivalent to many

proprietary software alternatives [12]. The reasons for the success of FOSS may be

summarized into the following four main areas [1, 13, 14, 15]:

1) Cost: Most OSS is currently free of charge, and people are free to use, modify, add to and

even distribute it under the GNU General Public License. Developers and researchers are

not charged for using OSS, and can download, modify and even distribute it under the

GNU General Public License.

2) Auditability: An important reason is the auditing process. FOSS publishes its source code,

which supports users in terms of auditability. In contrast, commercial closed source

software requires users to trust the seller, especially in terms of specifications, such as

freedom, security and adherence to standards, and flexibility in the face of future changes.

If the source code is not available, these claims remain simply claims. Publishing the

source code makes it possible for users to have confidence that there is a basis for these

claims.

3) Openness: Software is unlocked for any users wishing to work with FOSS. Furthermore,

uses are free to use, download, modify and even distribute it under the terms of the GNU

license.

4) Flexibility and Freedom: Open source software enables a number of projects to be carried

out and for a large number of researchers from different backgrounds and countries to

work together. This gives researchers more flexibility and the freedom to understand all

the requirements, and speeds up the implementation of programs.

5) Speed: Speed is a significant aspect of all technologies, especially OSS. For this reason,

when developers wish to build software quickly, they typically take on a large number of

assignments and then test them as prototype software. As this is quicker than using

http://bestelearningplatforms.com/go/Udacity.php
http://bestelearningplatforms.com/go/Udacity.php
http://bestelearningplatforms.com/go/Siminars.php
https://sourceforge.net/projects/mambolaithai/
https://sourceforge.net/projects/mambolaithai/
http://bestelearningplatforms.com/go/Udemy.php
http://bestelearningplatforms.com/go/Udemy.php
http://bestelearningplatforms.com/go/SkillShare.php
http://bestelearningplatforms.com/go/SkillShare.php

127

Journal of Engineering Technology (ISSN: 0747-9964)
Volume 6, Issue 1, Jan, 2017, PP.124-145

proprietary models, they can respond to mistakes and errors and find solutions quickly,

because they have the source code.

6) Quality: FOSS was created by thousands of developers and users working to improve and

innovate new features and enhancements for the software, especially security.

2.2 Free Open Source Software Evolution

Controlling FOSSE is now the most important challenge for developers. The main challenge

with FOSS is therefore how to make progress with its setting, particularly the development of

the quality and security of the software. There are two main aspects to the evolution of FOSS,

namely how to develop the features and tools of the software, and the maintenance of and

improvements to the code [16].

Software Evolution. As the majority of firms have become more dependent on software, the

useful management of software evolution has become critical to a firm’s success. Therefore,

the planning and development of software evolution, particularly for FOSS, has become vital.

An experiential study by Meir Lehman within IBM in 1969 aimed to improve the

company’s programming effectiveness. It received little attention within the company and

had no impact on its development practices. The aim of Lehman’s study was to formulate a

scientific theory of software evolution. Some variants were found, which were first described

in Lehman 1974 as the laws of software evolution. In 1996, the last version of the laws was

published after several years of intense activity and refinement [17].

The eight laws of software evolution proposed by Lehman have developed into a theory

for the software evolution engineering labouratory. Officially, this labouratory considers the

eight Lehman laws as rules to understand software evolution and proposes the best solutions

for problems. This study uses Lehman’s laws to deal with the specific evolution problems of

FOSS and to suggest some solutions to these problems.

[15] studied the evolution of OSS and assessed Lehman’s laws to observe if it they were

appropriate to OSS evolution. Linux Kernel was analysed and found to have a super-linear

growth rate related to its size. Moreover, the same result was found in Vim Text Editor [14,

18]. More studies published by Lehman analysed five types of software: ICL VME Kernel,

IBM OS 360, Logica FW, and two large real-time telecommunications systems. Other studies

have also been carried out, establishing steady growth models, but their results have not yet

been published [19].

The laws of software evolution as summarized by Lehman [20] are as follows:

Rule 1: Continuing Change: An e-type system must be continually modified to gradually

become acceptable, or it will become progressively less satisfactory to use.

Rule 2: Increasing Complexity: software development increases complexity and

maintenance.

128

Journal of Engineering Technology (ISSN: 0747-9964)
Volume 6, Issue 1, Jan, 2017, PP.124-145

Rule 3: Self-Regulation: software evolution processes are self-regulating, namely controlled

by either users o r the software itself.

Rule 4: Conservation of Organizational Stability: the average effective activity rate in

software does not vary throughout the system’s lifetime.

Rule 5: Conservation of Familiarity: The content of successive issues is statistically invariant

throughout the active lifetime of the software.

Rule 6: Continuing Growth: the growth of software code should continually increase to

preserve user satisfaction throughout their lifetimes.

Rule 7: Declining Quality: The quality of software will seem to decline, unless if it is

maintained and adapted to operational environmental modification.

Rule 8: Feedback System: Software evolution processes constitute multi-loop, multi-level,

multi-agent feedback systems and must be treated as such if they are be successfully

improved or modified.

The Differences between Open Source Evolution and Traditional Evolution.

The growing significance of OSS has helped developers to analyse how traditional software

engineering differs from OSS. The important question is whether the environment of OSS is

fundamentally different from that of commercially and traditional available software.

Lehman and other researchers carried out a series of experiential studies that showed that

traditional software grows at a linear or sub-linear rate [20, 21, 22].

Previous studies into Linux software appear to conclude that OSS builds up in a unique

approach. [23] discovered some features in Linux that are increasing at a super-linear rather

than a sub-linear rate. On the other hand, more studies into OSS are essential before drawing

conclusions. [24, 21] analysed the evolution of Linux and FreeBSD, and found that both

systems have a linear upper bound, and are consequently similar to the rates of increase for

profit systems. This study did not aim to confirm the hypothesis that OSS grows at rates that

exceed those of traditional systems.

[23] introduced 22 studies, of which 46% explained activities belong to the requirements

process and 60% explained activities belonging to the design process. Nearly all accounted

for activities linked to execution. The OSS community does not enact software engineering

models. Therefore, the requirements of OSS are developing using a number of different web

artefacts, as well as repeated interactions in forums and through messaging. A software

system is a general feature of OSS implementation and is modular in design. The main

concern in the OSS community is implementation, and any developers can make

contributions, including code and designs.

2.3 E-Learning Systems

E-learning is increasingly regarded as a significant feature and tools in higher education. The

advantage of e-learning is that it offers a chance for students to connect with each other and

129

Journal of Engineering Technology (ISSN: 0747-9964)
Volume 6, Issue 1, Jan, 2017, PP.124-145

their teachers electronically through discussion board forums, chatting and e-mail. Moreover,

it leads to a culture of learning and self-training at university, which develops and improves

the capacity of students to learn at a low cost and with minimum effort [25].

In e-learning, genuine benefits are to be gained from the use of the technology; it has

therefore become very popular and is embedded in many institutions. The use of e-learning

technology should increase the number of students in higher education. It promotes good

communication and opportunities for automated assessment. In terms of widening

participation, e-learning can offer resources for part-time students who cannot always travel

to the institute [26, 27].

Users of e-learning can enjoy the privacy of their home environment. Internet technology

supplies easy access to important information at a low price. E-learning makes interaction

between instructors and students easy; it is almost free from time and location constraints.

Furthermore, it facilitates the benefits of the integration of group learning facilities and

individuals. It also enhances learning and teaching experiences by supporting learning at

flexible times and locations. E-learning allows the online delivery of resources for both

lecturers and students, with many possibilities for students to access educational resources

both on and off campus [9, 28].

Why Choose the Moodle Platform? [8] argues that the Moodle platform is the best in terms of

security, performance, support, interoperability, flexibility, communications and metrics for

course delivery tools. In addition, [9] showed Moodle to be the best platform. This was a

comparative study between 10 VLE systems and Moodle that compared the features and

capabilities of VLE tools in the first phase, and the technical aspects of VLE systems in the

second. Moreover, [10] reports that the result of the evaluation shows that Moodle had the

best rating in the adaptation category and in terms of adaptation issues.

[11] provides a comparison between four VLE systems based on categories. This study

showed that Moodle outperformed all other systems and scored 4.467 out of 5. Finally,

Moodle is free and open source, which enables developers and researchers to use it and even

to distribute it under the terms of the GNU General Public License.

3 The Evolution of FOSS Using Project Code Metrics with Moodle as a Case

Study

This section focuses on an analysis of FOSS using Project Code Metrics (PCM) with Moodle

Software as a case study. The study examined the differences between the nine versions of

Moodle, and also examined the following four areas in the Moodle code: 1) Statistical Labour

Distribution; 2) Quality Measurements; 3) Project Code Meter Time; and 4) Quantitative

Metrics.

PCM is a professional software tool used to measure the complexity, quality and

maintainability of software projects as well as estimating the time and cost of software

http://www.edutools.info/static.jsp?pj=8&page=HOME

130

Journal of Engineering Technology (ISSN: 0747-9964)
Volume 6, Issue 1, Jan, 2017, PP.124-145

projects. It enables users to be continuously aware of the health of their source code. In

addition, it exports metrics to HTML format for public display and to CSV for additional

study [30]. PCM has some standard metrics, some of which are used in this study to measure

the evolution of Moodle, as shown in Appendix A, B, C and D below.

This study used Moodle software as a case study and examined nine versions of it. To

provide an outline summary of this study, there is a huge difference between Version 1.6 and

Version 3.2, which are separated by a seven-year gap. Version 1.6 has just 2,180 files,

compared to 11,106 in version 3.2. Version 1.6 has just 183,563 lines of code, compared to

1161993 in version 3.2. Version 2.6 has the maximum number of lines of code (1504693), as

shown in Appendix A. This shows that there has been huge evolution in Moodle software in

terms of the FOSS it uses.

Table 2 shows all the versions of Moodle examined in this study. These nine versions are

1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0 and 3.2. These versions were released between 28 January

2009 and 23 May 2016, with the last version under preparation during this study.

Table 2. Summary of Moodle Versions Statistics [30]

No. Version Year

1. Moodle -1.6.9 28 January 2009

2. Moodle -1.8.14 3 December 2010

3. Moodle -2.0.10 9 July 2012

4. Moodle -2.2.11 8 July 2013

5. Moodle -2.4.11 14 July 2014

6. Moodle-2.6.11 11 May 2015

7. Moodle -2.8.12 9 May 2016

8. Moodle -3.0.3 14 March 2016

9. Moodle -3.2 10 November 2016

3.1 Statistical Labour Distribution

Statistical Labour Distribution (SLD) in all versions of Moodle is described in Appendix A

and Figure 1. SLD indicates the number of hours for the 11 standard metrics. This method

allows programming time to be measured for current software projects, according to the

Weighted Micro Function Points Algorithm (WMFPA). This is useful in weighing up the

effort (work hours) of a developer or team, either in-house or outsourced. SLD indicates

which of the five standard metrics will appear in both the minutes and in the percentage of

total file development time, as shown below [29]:

1. Time: display the calculated of programmer time required for developing, coding, testing

and debugging the software.

2. Coding: display the calculated programmer time involved in developing only the coding

in the file program.

131

Journal of Engineering Technology (ISSN: 0747-9964)
Volume 6, Issue 1, Jan, 2017, PP.124-145

3. Debugging: display the calculated programmer time involved only in developing

debugging in the file program.

4. Testing: display the calculated programmer time developed only in the testing of the file

program.

5. Object Vocabulary, Flow Complexity, Data Transfer, Inline Data, Object Conjuration,

Code Structure, Arithmetic, Comments: indicate the linking of the WMFPA source code

metric measured for the file program.

In the SLD, Version 2.6 appears to require the highest number of hours in Debugging

(139724), Arithmetic Intricacy (12,026), Data Transfer (52,263), Code Structure (36,852) and

Inline Data (11,251), whereas version 3.0 is preferred in terms of Coding (175662), Testing

(89,499), Flow Complexity (144614) and Comments (3,937). In addition, Version 3.2

appears to require the highest number of hours in Object Conjuration (75,117) and Object

Vocabulary (88,565), as shown in Appendix A. The best evolution was in 2.6, which showed

growth in five standards, followed by 3.0, which showed growth in four standards, and 3.2,

with growth in two standards.

Figure 1. The evolution of SLD in nine versions of Moodle by time in hours.

Figure 1 clearly displays the evolution of SLD in nine versions of Moodle over the past

decade. The coding standard had the highest evolution, and Version 3.0 the highest number

of hours (175662), followed by Version 3.2, with 174677 hours. The second standard is Flow

Complexity, for which Version 3.0 had the highest number of hours (144614), followed by

Version 3.2 with 140428 hours. The debugging standard had the highest number of hours in

Version 3.0 version (89,499), followed by Version 3.2 (89,499 hours). In contrast, the

Arithmetic Intricacy standard had the lowest evolution; the highest number of hours in this

standard was in Version 2.6 (11,251), followed Version 3.0 with 7,128.

As shown in Figure 1, the Coding, Flow Complexity and Debugging standards underwent

the most evolution in SLD in the nine versions of Moodle over the past decade. In contrast,

the Testing, Object Vocabulary, Object Conjuration and Data Transfer standards had low

evolution, and Code Structure and Arithmetic Intricacy had weak evolution.

132

Journal of Engineering Technology (ISSN: 0747-9964)
Volume 6, Issue 1, Jan, 2017, PP.124-145

3.2 Quality Measurements

Quality Measurements (QLMs) in all versions of Moodle are described in Appendix B and

Figure 2. These refer to some essential source code qualities that affect maintainability, re-

use and peer review. QLMs refer to the eight standard metrics described below [29]:

1. Code Quality Notes Count: this displays the number of warnings indicating quality issues.

This should preferably be zero; higher values suggest that the code will not be easy to

maintain.

2. Code to Comment Ratio and Essential Comment Factor: this indicates the balance

between code statements and comment lines. If the value is 100, this means each code has

a comment, whereas if the value is lower than 100, this means that only some of the code

lines have comments. If the value is higher than 100, this means that each code line has

more than one comment.

3. Code Structure Modularity: this shows the degree of the code, which is divided into

functions and classes. If the values are around 100, the balance is good. However, if the

values are lower than 100, they indicate a low code, and if the values are higher than 100,

they indicate fragmented code.

4. Logic Density: this shows how the logic is condensed within the program code. If the

values are higher, this means that code is more likely to have been generated by a person.

If there is a low value, this indicates that the code is not guaranteed.

5. Source Divergence Entropy: this displays the degree to which objects are manipulated by

logic. The higher the values, the greater the amount of manipulation.

6. Information Diversity Factor: this displays the degree of re-use of objects. Higher values

indicate more re-use.

7. Object Convolution Factor: this displays the degree to which objects work together with

each other. If the values are higher, there is more interaction and thus more complex data

flow.

Appendix B shows that Version 2.6 appears to have scored highest in terms of Code

Quality Notes Count (4275) and Code Structure Modularity (188), but Version 3.2 is

preferred for the Object Convolution Factor (29) and Code to Comment Ratio (25). Version

1.6 appears to have the highest number for Logic Density (104) and Source Divergence

Entropy. Version 2.8 appears to have the highest number in Essential Comment Factor and in

Code to Comment Ratio (25). Version 2.4 appears to have the high number in Information

Diversity Factor (548). Version 3.0 appears to have the highest number for the Code to

Comment Ratio (25).

133

Journal of Engineering Technology (ISSN: 0747-9964)
Volume 6, Issue 1, Jan, 2017, PP.124-145

Figure 2. The evolution of nine versions of Moodle in by time in hours.

Figure 2 displays the evolution of the nine versions of Moodle in QLMs over the past

decade. The Code Quality Notes Count standard had the highest evolution, whilst Version 2.6

had the highest number of notes (4,275), followed by 3.0 with 3,814 notes. The second

standard is Information Diversity Factor, for which Version 2.4 version had the highest

number of files (548), followed by Version 3.2 with 540 files and Version 2.2 with 540 files.

The Information Diversity Factor, Code to Comment Ratio and Code Structure Modularity

show low evolution at this stage. In contrast, the Logic Density and Source Divergence

Entropy standards have not evolved.

3.3 Quantitative Metrics

Quantitative Metrics (QTMs) are the conventional metrics used in the Legacy Sizing

Algorithms (LSA) approach and are specific in order to obtain general data. They are given

for each file and each entire project based on the context. There are seven standard metrics

for, as listed below [29]:

1. Files: this indicates the number of files that metrics measure only on a per-project basis.

2. Logical Lines of Code: the stated number of lines of code.

3. Multi Line Comments: the number of comments that cross more than one text line.

4. Single Line Comments: the number of comments with a width of just a single line of text.

5. High Quality Comments: these indicate the number of comments that look verbally

adjectival irrespective of their length in lines of text.

6. Strings: the number of text strings set in source code.

7. Numeric Constants: the number of hard-coded numbers embedded in the code.

In the QTMs, Version 2.6 appears to have the highest number of Logical Lines of Code

(1504693), Strings (1351206) and Numeric Constants (675927), whereas Version 3.0 is

preferable in terms of High Quality Comments (296103) and Multi Line Comments

134

Journal of Engineering Technology (ISSN: 0747-9964)
Volume 6, Issue 1, Jan, 2017, PP.124-145

(104758). Moreover, Version 3.2 has the highest number of Single Line Comments (224271)

and Files (11,106), as shown in Appendix C.

Figure 3 illustrates the evolution over the nine versions with seven standards of QTMs.

This comparison shows that there is a big difference between the first (1.6) and the last (3.2)

versions, which shows that there have been huge evolution in Moodle software. Version 2.6

version shows the most evolution in most of the standards, as shown in Figure 4.

Figure 3. The evolution of nine versions of Moodle in QTMs.

3.4 Project Code Meter Time

For Project Code Meter Time (PCMT), Version 3.0 appears to have the highest number of

hours in Total Time in all versions (24272044 hours). This is because it has 10539736 hours

in the Coding standard, which is the highest number of hours in all version of Moodle. In

addition, it has a high number in Testing (5369991), Flow Complexity (8676890) and

Comments (236255), as shown in Appendix D.

Version 2.6, the second version, has 24180581 hours in all versions. This is because it has

a high number in Debugging (8383478 hours). It also has the highest number of hours in

Arithmetic Intricacy (721588), Data Transfer (3135816), Code Structure (2211166) and

Inline Data (675097), as shown in Appendix D.

Version 3.2 is the third version, and has 24076766 hours in all versions. This is because it

has a high number in Object Conjuration (10480668 hours) and 5313902 hours in Object

Vocabulary, as shown in Appendix D.

Version 1.6, the last version, has 3820200 hours in Total Time in all versions. This is

because it has the lowest number of hours in all standards, as shown in Appendix D.

Figure 4 shows the number of hours in PCMT in the nine versions of Moodle over the

past decade. The coding standard has the highest number of hours, and Version 3.0 has the

highest number of hours (10539736), followed by 3.2 with 10480668 hours. The second

standard is Debugging, for which Version 2.6 has the highest number of files (8383478

hours), followed by Version 3.0 with 8362317 hours.

135

Journal of Engineering Technology (ISSN: 0747-9964)
Volume 6, Issue 1, Jan, 2017, PP.124-145

Figure 4. The evolution of PCMT in nine versions of Moodle.

4 Discussion and Results

In Section 3 above, PCM was measured as a case study in the nine versions of Moodle.

The study focused on the nine versions, and discovered differences between them through the

four selected areas. These four areas are described in detail in Section 3 above. Version 2.6

had the highest evolution in this study because this was the first version in the new style of

Moodle. The history of Moodle software consists of two stages. The first stage included

Versions 1.6 to 2.4, and the second stage includes Version 2.6 onwards. There is a big gap

between Versions 2.4 and 2.6 because Moodle started to use the new style.

This discussion summarises the results of this study by dividing the results into the

following four areas: 1) Statistical Labour Distribution; 2) Quality Measurements; 3) Project

Code Meter Time; and 4) Quantitative Metrics.

4.1 Statistical Labour Distribution and Project Code Meter Time

Figure 5, Appendix A and Appendix D show the SLD and PCMT areas in all nine versions of

Moodle. The rate of change in the SLD and PCMT areas was 530.27% and 562.85%

respectively, which demonstrates that there has been a high degree of evolution in these

areas. The most evolution in SLD was in Comments, which increased by 949.04%, and the

best evolution in PCMT was in Code Structure, which increased by 946.54% between

Version 1.6 and Version 3.2. Version 3.0 had the highest number of hours in SLD and PCMT

(809063 and 24272044 respectively).

136

Journal of Engineering Technology (ISSN: 0747-9964)
Volume 6, Issue 1, Jan, 2017, PP.124-145

Figure 5. Percentage change between V1.6 and V3.2.

4.2 Quality Measurements

Figure 6 and Appendix B show the QLM area in all versions of Moodle. The change rate in

QLMs was 175.28%, which shows that there was an evolution in this area despite the

increase in evolution in some standards, as shown in Appendix C. The highest amount of

evolution was in the Code Quality Notes Count, which increased by 364.67% between

Versions 1.6 and 3.2. Version 2.6 had the highest number (5,179), as shown in Appendix C.

Figure 6. Percentage change between V(1.6) and V(3.2)

4.3 Quantitative Metrics

Figure 7 and Appendix C show QTMs in all versions of Moodle. The rate of change in QLMs

was 534.52%, which shows that there was substantial evolution in this area. The highest

amount of evolution was in Multi Line Comments, which increased by 1815.11% between

Versions 1.6 and 3.2. Version 2.6 had the highest number (4091086), as shown in Appendix

C.

137

Journal of Engineering Technology (ISSN: 0747-9964)
Volume 6, Issue 1, Jan, 2017, PP.124-145

Figure 7. The Percentage change between V(1.6) and V(3.2).

4.4 The Rate of Change of Four Metrics between Moodle and Magento System

This discussion focuses on two types of comparison in terms of the rate of change. The first

comparison is between Versions 1.6 to 3.2 in Moodle system and the second is between

Versions 1.1 to 1.9 in Magento system. Magento is an e-Commerce platform that has open

source developed by Varien Inc. This platform has well-organized business user tools speed

up build up time and improves productivity [31].

The Rate of Change between V1.6 to V3.2 in Moodle System. Data analysis from Table 3 shows

that the rate of change between V1.6 to V3.2 was high in the SLD, QTMs and PCMT areas,

compared to QLMs being quite good in some standards, with negative changes in others. The

high rate in SLD area was in the Comments standard (949.03%), whereas the high rate in

QTMs is for Multi Line Comments (1815.11%). Moreover, the highest rate in the PCMT area

was for Comments (946.54%), whereas the highest rate in QLMs was for Code Quality Notes

Count (364.67%). On the contrary, the lowest rate in SLD area was for the Flow Complexity

standard (417.66%), whereas the lowest rate in QTMs was for Files (363.57%). Moreover,

the lowest rate in PCMT area was for Flow Complexity (417.65%), whilst the lowest rate in

QLMs was for Source Divergence Entropy (-8.82%).

Table 3. Rate of Change between V(1.6) to V(3.2) of Moodle System

1. Statistical Labour Distribution 2. Quality Measurements 3. Quantitative Metrics 4. Project Code Meter Time

Package % Package % Package % Package %

Coding 562.86 Code Quality Notes Count 364.67 Files 363.57 Coding 562.85

Debugging 502.03 Code to Comment Ratio 8.69 Logical Lines of Code 533.02 Debugging 502.02

Testing 515.49 Essential Comment Factor 1.56 Single Line Comments 447.61 Testing 515.48

Flow Complexity 417.66 Code Structure Modularity 13.57 Multi Line Comments 1815.11 Flow Complexity 417.65

Object Vocabulary 616.77 Logic Density -6.73 High Quality Comments 591.83 Object Vocabulary 616.76

Object Conjuration 754.47 Source Divergence Entropy -8.82 Strings 369.53 Object Conjuration 754.39

Arithmetic Intricacy 792.68 Information Diversity Factor 19.20 Numeric Constants 1180.37 Arithmetic Intricacy 792.43

Data Transfer 436.62 Object Convolution Factor 38.09 Data Transfer 436.60

Comments 949.03 Comments 946.54

138

Journal of Engineering Technology (ISSN: 0747-9964)
Volume 6, Issue 1, Jan, 2017, PP.124-145

Table 3 above shows that all metrics (SLD, QTMs and PCMT) indicate that evolution

occurred between V(1.6) and V(3.2), except for QLMs, in which has some standards showed

evolution and others did not.

The Rate of Change between V(1.1) and V(1.9) in Magento System. Data analysis from Table 4

shows that the rate of change between V1.1 to V1.9 was high in the SLD, QTMs and PCMT

areas, compared to QLMs being quite good in some standards, with negative changes in

others. The high rate in SLD area was in the Arithmetic Intricacy standard (205.21%),

whereas the high rate in QTMs is for High Quality Comments (196.14%). Moreover, the

highest rate in the PCMT area was for Arithmetic Intricacy (204.91%), whereas the highest

rate in QLMs was for Code Quality Notes Count (98.80%). On the contrary, the lowest rate

in SLD area was for the Data Transfer standard (120.70%), whereas the lowest rate in QTMs

was for Single Line Comments (93.74%). Moreover, the lowest rate in PCMT area was for

Data Transfer (120.70%), whilst the lowest rate in QLMs was for Code Structure Modularity

(-6.84%).

Table 4. Rate of change between V(1.1) to V(1.9) in Magento System

1. Statistical Labour Distribution 2. Quality Measurements 3. Quantitative Metrics 4. Project Code Meter Time

Package % Package % Package % Package %

Coding 139.94 Code Quality Notes Count 98.80 Files 123.49 Coding 136.93

Debugging 132.84 Code to Comment Ratio 15.78 Logical Lines of Code 129.31 Debugging 132.83

Testing 133.84 Essential Comment Factor 22.72 Single Line Comments 93.74 Testing 133.90

Flow Complexity 128.07 Code Structure Modularity -6.84 Multi Line Comments 187.55 Flow Complexity 128.06

Object Vocabulary 138.10 Logic Density -1.09 High Quality Comments 196.14 Object Vocabulary 138.10

Object Conjuration 154.47 Source Divergence Entropy -4.83 Strings 142.50 Object Conjuration 154.45

Arithmetic Intricacy 205.21 Information Diversity Factor 6.87 Numeric Constants 102.17 Arithmetic Intricacy 204.91

Data Transfer 120.70 Object Convolution Factor 11.11 Data Transfer 120.70

Comments (CM) 141.66 Comments 125.87

Code Structure 125.87 Code Structure 141.46

Inline Data 141.97 Inline Data 141.84

This section has made a compression between the rate of change of four metrics between

Moodle and Magento systems. Table 3 and 4 above show that all metrics (SLD, QTMs and

PCMT) indicate that evolution occurred between all versions in Moodle and Magento, except

for QLMs, in which has some standards showed evolution and others did not such as (Code

Structure Modularity and Logic Density) in Moodle system and (Code Structure Modularity,

Source Divergence Entropy and Logic Density) in Magento system.

Code Structure 667.20 Code Structure 667.15

Inline Data 445.63 Inline Data 445.48

139

Journal of Engineering Technology (ISSN: 0747-9964)
Volume 6, Issue 1, Jan, 2017, PP.124-145

Figure 8. The rate of change of four metrics between Moodle and Magento system

As we can see in Table 3 and 4, the rate of change of evolution in Moodle equal to four

times of the evolution of the Magento system. The total proportion of four metrics in Moodle

is 19049.06 and in Magento is 4239.14. This means Moodle system has high evolution and

has 4.49 times comparing with Magento system as in Figure 8.

4.5 Applying Lehman’s Laws to the nine versions of Moodle

In this section, Lehman’s laws were applied in order to observe and determine the scale of the

evolution of the nine versions of Moodle software. For most software, including Moodle,

these laws indicate the correct means of achieving rapid evolution. To ensure accuracy, data

from the four areas described above were obtained in order to observe whether the nine

versions of Moodle were compatible with the eight laws.

After reviewing data, as described in Appendix E, a more detailed picture emerges, as

shown in Figure 9. This suggests that Laws 1 and 6 are compatible with the overall trends in

the Moodle data and obtained a high number between 400 and 450. This demonstrates that

Moodle is being continually modified, is satisfactory for use and continually aims to increase

and maintain lifetime user satisfaction.

Laws 2 and 3 are generally compatible with overall trends in the Moodle data and also

had a high number of between 350 and 400. This shows that Moodle has undergone

development, increasing its complexity and providing more time for maintenance; software

evolution processes are also self-regulating and controlled by itself.

However, Laws 4, 5 and 8 are compatible with some trends in the Moodle data and had a

score of between 250 and 300. This shows that the average effective activity rate has been

shortened in Moodle, and does not vary through the lifetime of the system. It also has

limitations in terms of the active lifetime of software and the content of successive issues is

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

SLD QTMs QLMs PCMT

Moodle

Magento

The evolution of Moodle equal to four times of the evolution of the
Magento system

140

Journal of Engineering Technology (ISSN: 0747-9964)
Volume 6, Issue 1, Jan, 2017, PP.124-145

statistically invariant. Finally, the result of law 7 is nearly zero, which shows that Moodle has

been maintained and adapted to achieve operational environmental modification.

Figure 9. Applying Lehman’s Laws on 9 versions of Moodle

The results show that the Moodle system has successfully applied Lehman’s laws to

facilitate a high degree of evolution over the nine versions released during the past decade.

Lehman’s laws provide the Moodle system with the correct means to achieve rapid evolution.

4.6 Recommendations

As a result, this study has made the following recommendations:

1. Measuring the evolution of any system, whether commercial or non-commercial, is very

important, and helps determine the following:

 Advantages, in order to provide a good impression and to show that the system is

working in correctly and in a way that supports these advantages.

 Disadvantages will help the developers to spot any mistakes or errors and to work hard

to correct them in the next version.

2. As described in this case study, the process of evolution is essential for any system.

Understanding this will aid efficacious planning and coordination, not just in the short

term, but also much further ahead, especially for large software packages such as Apache,

Mozilla or Linux.

3. Controlling large FOSS is a now an important challenge, and a major part of this is how its

environment should evolve, and in particular how improvements in the security and

quality of these systems should be made. The evolution of FOSS should focus on coding

and developing the requirements of the application.

4. The community in FOSS plays vital role in its evolution by using metrics, and obtaining

an improved understanding of and providing explanations for issues related to the

development and evolution of FOSS.

141

Journal of Engineering Technology (ISSN: 0747-9964)
Volume 6, Issue 1, Jan, 2017, PP.124-145

5. The modelled system and understanding of software evolution will:

 Offer more explanation and improvements for any system; for example Project Code

Metrics has system metrics tools to measure the evolution of software.

 Improve the ability to generate processes for efficient and reliable system

development.

5 Conclusions and Future Work

From time to time, it is very important to measure systems; this particularly applies to FOSS,

which has large groups of developers working on the evolution and development of a system.

For that reason, this paper aims to confirm that FOSS is one of the most important aspects of

the evolution of software development, because it is open source and therefore easier to

access the code without restrictions or costs. In addition, it offers the most important tools

that may be used to develop FOSS.

The main aim of this study was to measure the evolution of FOSS. It was found that there

has indeed been evolution between V(1.6) to V(3.2) of the Moodle system and also between

V(1.1) to V(1.9) of the Magento system. This paper has made a compression between the rate

of change of four metrics between Moodle and Magento systems. It showed that all metrics

(SLD, QTMs and PCMT) indicate that evolution occurred between all versions in Moodle

and Magento, except for QLMs, in which has some standards showed evolution and others

did not. In addition, this study examined the evolution of Moodle by applying the eight

Lehman laws of software evolution.

This study found that a number of different concepts in software engineering drive the

FOSS industry, such as security, quality, and the reliability of reusability. Therefore, the

future of software engineering should consist of industrial rules for FOSS. In addition, some

FOSS is still being challenged by closed software, the evolution and development of which

are often faster than for OSS.

ACKNOWLEDGEMENT

The authors wish to acknowledge contributions from many people, including Martin

Dougiamas who is the author of Moodle. Also, author is indebted to the QU for its

encouragement and financial support.

REFERENCES

1. Silberman, G. (2014) A Practical Approach to Working with Open Source Software, Silberman,

G. (2014) A Practical Approach to Working with Open Source Software, Intellectual Property &

Technology Law Journal, Vol. 26(6).

142

Journal of Engineering Technology (ISSN: 0747-9964)
Volume 6, Issue 1, Jan, 2017, PP.124-145

2. Alenezi, M. and Zarour, M. (2015) Modularity Measurement and Evolution in Object-Oriented

Open-Source Projects. In Proceedings of the The International Conference on Engineering &

MIS. ACM, Istanbul, pp: 1-7.

3. Alenezi, M. and Khellah. F. (2015) Architectural Stability Evolution in Open-Source Systems.

In Proc. of the The International Conference on Engineering & MIS, ACM, USA, Vol. 7(1), pp.

35-39.

4. Gamalielsson, J. and Lundell, B. (2014) Sustainability of Open Source software communities

beyond a fork: How and why has the LibreOffice project evolved?, Journal of Systems and

Software, Vol. 89(1), pp. 128–145.

5. Koponen,. T. (2006) Evaluation Framework for Open Source Software Maintenance. In Proc. of

the international Conference on Software Engineering Advances. IEEE Computer Society,

Washington, pp. 52.

6. Dagienė, V. and Grigas, G. (2006) Quantitative evaluation of the process of open source software

localization. Informatica, vol. 17(1), pp.3-12.

7. Li, Y. et al., (2011) Open source software adoption: motivations of adopters and a motivations of

non-adopters. SIGMIS Database journal, Vol. 42(2) pp. 76-94.

8. Saeed, F. (2013) Comparing and Evaluating Open Source E-learning Platforms, International

Journal of Soft Computing and Engineering, Vol. 3(3), pp. 244-249.

9. Al-Ajlan, A. and Zedan, H. (2008) Why Moodle, in Proc. 12IEEE International Workshop on

Future Trends of Distributed Computing Systems, IEEE Press, China, pp. 58–64.

10. Sabine, G. and L. Beate, (2005) An evaluation of open source e-learning platforms stressing

adaptation issues, in Procs of Fifth IEEE International Conference on Learning Technologies,

IEEE: Ischia, Italy

11. Sclater, N. (2006) Moodle: Transforming Learning Transforming Institutions, in Moodle

Regional User Group Conference. London: Packt Publishing.

12. Sauer R. (2007) Why Develop Open Source Software? The Role of Non-Pecuniary Benefits,

Monetary Rewards and Open Source Licence Type, University of Southampton, Discussion Paper

No. 3197.

13. Nakagawa, E. et al. Software Architecture Relevance in Open Source Software Evolution: A Case

Study. In Proc. of the 32nd Annual IEEE international Computer Software and Applications

Conference, IEEE Computer Society, Washington, vol. 00, pp. 1234-1239, 2008.

14. Wang, Y. et al. (2007) Measuring the evolution of open source software systems with their

communities. SIGSOFT Softw. Eng. Notes, ACM, USA, Vol. 32(6), pp. 1-7,

15. Scacchi. W. (2010) The future of research in free/open source software development. InProcs of

the FSE/SDP workshop on Future of software engineering research, ACM, USA, pp. 315-320.

16. Karus, S. and Gall, H. (2011) A study of language usage evolution in open source software. In

Procs of the 8th Working Conference on Mining Software Repositories. ACM, USA, pp. 13-22.

17. Herraiz, I. et al., (2013) The evolution of the laws of software evolution. A discussion based on a

systematic literature review, ACM Computing Surveys, Vol. 1(1).

143

Journal of Engineering Technology (ISSN: 0747-9964)
Volume 6, Issue 1, Jan, 2017, PP.124-145

18. Postner, K. and Jackson, S. (2014) Teaching open source (software), In Procs of the 45th ACM

technical symposium on Computer science education, ACM, USA, pp. 734-734.

19. Scacchi, W. (2006) Software Evolution and Feedback, chapter 9 (Understanding Open Source

Software Evolution (p 181-205), John Wiley and Sons Inc, New York.

20. Lehman, M. et al., (1997) Metrics and laws of software evolution - the nineties view. In

Proceedings of the 4th International Software Metrics Symposium, pp: 20–32, Albuquerque.

21. Wu, J. (2006) Open Source Software Evolution and Its Dynamics, Thesis, Computer Science,

University of Waterloo, Waterloo, Ontario, Canada,.

22. Patil, A. (2012) Emerging technologies in distance education and their impact on the stakeholders,

International Conference 2012 on Sousse (ICEELI), pp. 1-8.

23. Llanos, J. and Castillo S. (2012) Differences between traditional and open source development

activities. In Proceedings of the 13th international conference on Product-Focused Software

Process Improvement, Springer-Verlag, Berlin, pp: 131-144

24. Burov, E. and Parfenov, R. (2014) Learning Analytics for Mixed E-Governance-E-Learning

Projects. In Proces of the 2014 Conference on Electronic Governance and Open Society:

Challenges in Eurasia. ACM, USA, pp: 34-37.

25. Henneke M. and Matthee M. (2012) The adoption of e-Learning in corporate training

environments: an activity theory based overview. In Proc.s of the South African Institute for

Computer Scientists and Information Technologists Conference, ACM, USA, pp. 178-187.

26. Yadav, N., et al., (2014) Developing an Intelligent Cloud for Higher Education, SIGSOFT Softw.

Eng. Notes, Vol:39(1), pp. 1-5.

27. Pires J. and Cota M. P., (2010) Evolutive mechanism for E-Learning platforms: A new approach

for old methods, IEEE EDUCON Conference, Madrid, 2010, pp. 891-894.

28. Carlos J. Costa and Manuela A. (2011) Analysis of e-learning processes. In Proceedings of the

2011 Workshop on Open Source and Design of Communication. ACM, USA, pp: 37-40.

29. Project Code Meter, User Manual, retrieved on November 2016 from

http://www.projectcodemeter.com/

30. All official releases of Moodle https://docs.moodle.org/dev/Releases#Moodle_1.0

31. Daniel A., María R., and Slinger J. (2015) Relating Health to Platform Success: Exploring Three

E-commerce Ecosystems. In Procs of the 2015 European Conference on Software Architecture

Workshops. Croatia,pp: 1-6.

APPENDIX

Appendix A

Statistical Labor Distribution in all versions of Moodle by Time in Hours

 Versions of Moodle

Package 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 % Change 9V

Coding 26352 40385 99970 112184 133423 174659 162646 175662 174677 562.86

144

Journal of Engineering Technology (ISSN: 0747-9964)
Volume 6, Issue 1, Jan, 2017, PP.124-145

Debugging 22902 34174 81822 90858 107305 139724 129115 139371 137877 502.03

Testing 14415 21647 52221 58148 68739 88625 82838 89499 88724 515.50

Flow Complexity 27127 39580 90617 99340 116778 135393 134256 144614 140428 417.67

Object Vocabulary 12356 18925 49021 54252 63748 84861 81575 88361 88565 616.78

Object Conjuration 8791 14823 40568 46046 54812 67014 68342 74173 75117 754.48

Arithmetic Intricacy 1149 1747 4685 5415 6621 12026 9959 10356 10257 792.69

Data Transfer 8898 12576 27157 30991 36261 52263 44044 47666 47749 436.63

Comments 363 695 2195 2469 3017 3344 3666 3937 3808 949.04

Code Structure 3687 5978 16085 17978 21189 36852 26018 28296 28287 667.21

Inline Data 1295 1882 3681 4696 7039 11251 6737 7128 7066 445.64

Total Time 127335 192412 468022 522377 618932 806012 749196 809063 802555 530.27

Appendix B

Quality Measurements in all versions of Moodle

 Versions of Moodle

Package 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 % Change 9V

Code Quality Notes Count 753 1029 2547 2432 2770 4275 3453 3814 3499 364.67

Code to Comment Ratio 23 24 24 24 23 17 25 25 25 8.6957

Essential Comment Factor 64 65 62 63 63 40 66 65 65 1.5625

Code Structure Modularity 140 145 162 161 156 188 161 162 159 13.57

Logic Density 104 103 95 102 93 75 99 98 97 -6.73

Source Divergence Entropy 68 65 61 62 62 61 62 62 62 -8.82

Information Diversity Factor 453 499 527 540 548 503 533 535 540 19.21

Object Convolution Factor 21 23 26 27 27 20 28 28 29 38.10

Total Time 1626 1953 3504 3411 3742 5179 4427 4789 4476 175.28

Appendix C

Quantitative Metrics in all versions of Moodle

 Versions of Moodle

Package 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 % Change 9V

Files 2180 2801 6218 6615 7434 9197 9849 10594 11106 363.58

Logical Lines of Code 183563 280801 676863 754308 905887 1504693 1068966 1159295 1161993 533.02

Single Line Comments 40954 58346 116952 136808 156948 197357 203862 216214 224271 447.62

Multi Line Comments 5069 15478 62156 66901 79095 88406 96760 104758 97077 1815.11

High Quality Comments 42636 67619 164540 186369 216919 264300 276851 296103 294972 591.84

Strings 172099 226687 466908 556058 839564 1351206 751506 814433 808072 369.54

Numeric Constants 36644 89072 182956 278038 377296 675927 462710 470152 469180 1180.37

Total Time 483145 740804 1676593 1985097 2583143 4091086 2870504 3071549 3065671 534.52

Appendix D

Project Code Meter Time in all versions of Moodle

 Versions of Moodle

Package 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 % Change 9V

Coding 1581143 2423127 5998213 6731091 8005382 10479595 9758775 10539736 10480668 562.85

Debugging 1374133 2050487 4909342 5451493 6438339 8383478 7746938 8362317 8272651 502.03

Testing 864924 1298878 3133314 3488925 4124396 5317508 4970312 5369991 5323445 515.48

145

Journal of Engineering Technology (ISSN: 0747-9964)
Volume 6, Issue 1, Jan, 2017, PP.124-145

Flow Complexity 1627655 2374841 5437069 5960434 7006711 8123639 8055414 8676890 8425682 417.66

Object Vocabulary 741370 1135506 2941314 3255177 3824889 5091704 4894504 5301662 5313902 616.77

Object Conjuration 527513 889388 2434100 2762793 3288777 4020888 4100531 4450405 4507044 754.39

Arithmetic Intricacy 68961 104822 281135 324947 397264 721588 597560 621398 615435 792.44

Data Transfer 533904 754563 1629475 1859494 2175697 3135816 2642653 2859973 2864977 436.61

Comments 21835 41700 131719 148166 181029 200680 220004 236255 228513 667.16

Code Structure 221237 358698 965154 1078700 1271379 2211166 1561128 1697774 1697238 946.54

Inline Data 77724 112972 220900 281796 422368 675097 404228 427685 423972 445.48

Total Time 3820200 5772493 14040870 15671509 18568117 24180581 22476025 24272044 24076766 562.85

Appendix E

Applying Lehman’s Laws on 9 versions of Moodle

 Versions of Moodle

Rule V(1.6) to V(3.2)

Rule1: Continuing Change 443.42

Rule2: Increasing Complexity 376.85

Rule3: Self-Regulation 376.86

Rule4: Conservation of 241.01

Rule5: Conservation of Familiarity 307.52

Rule6:Continuing Growth 415.93

Rule7: Declining Quality 11.6

Rule8: Feedback System 307.51

